
Week 3 - Wednesday



 What did we talk about last time?
 Requirements management
 Requirements modeling
 UML
 Activity diagrams
 Use case diagrams
 State diagrams
 Sequence diagrams
 Class diagrams







 A process is a collection of actions that turns a set of inputs 
into a set of outputs

 Describing processes requires:
 Specifying the inputs to the whole process and the outputs from the 

whole process
 Specifying the actions of the process
 Specifying the inputs to each action in the process and the outputs 

from each action
 Specifying the conditions and order for each action

 UML activity diagrams are good ways to model processes



 A software process is a process used to make or support 
software

 A software lifecycle process shows the steps from product 
inception to retirement of the product

 A model is an entity used to represent another entity (the 
target)

 A software process model is a model for a software process
 Usually a 2D diagram like a UML diagram



 The waterfall lifecycle process model is the oldest 
description of the tasks in the development of software

 Proposed by Winston Royce in 1970
 It follows similar processes in other engineering disciplines
 It's the usual approach we've been talking about, from 

requirements to design to implementation to testing to 
maintenance



Requirements

Design

Implementation

Testing

Maintenance

SRS

SDD

Code
Software 
Product

Product
Vision

• Rounded rectangles are actions (tasks)
• Squared rectangles are documents (data)



1. Developers get a product vision
2. From it and interaction with 

stakeholders, they create a software 
requirements specification (SRS)

3. From the SRS, they create a software 
design document (SDD)

4. Using the SDD, they implement the 
code

5. Then they test the software product
6. When the software is in use, problems 

are found, leading to maintenance 
and a new release

 The name "waterfall" is because 
each action flows to the next
 Like a series of waterfalls

 In principle, developers never
return to an earlier action

 In practice, earlier actions must 
always be reexamined because you 
never get it perfect the first time

 Even so, the goal is to be a 
thorough as possible the first time



 The whole product is specified
 The project to create it is planned early
 This approach is important for large and complicated 

products from a management perspective
 Size, cost, delivery dates, etc.

 By comparing to the plan, it's easy to tell if a product is on-
time and on-budget

 If it isn't, managers can take actions
 Increase time, increase budget, reduce scope, etc.



 If each step is done completely and correctly, all mistakes are 
found before moving on to the next step
 This ends up being the major disadvantage of waterfall, too, since 

mistakes usually propagate to future steps
 Good documentation is created for each step
 This is really important when new people are added to the project

 Each phase is distinct, allowing it to be carried out by teams 
that specialize in that phase
 For multiple projects, appropriate teams can be scheduled for 

maximum efficiency



 Requirements can't change
 But they usually do
 If requirements change, all the advantages of waterfall's 

predictability disappear too
 Even when requirements stay the same, it's hard to be 

complete and consistent in documenting them
 Creating all the documentation for waterfall is expensive
 If you have separate teams for each phase, each team has to 

learn what has already been done



 Because there are so many teams, a lot of management is 
needed
 Drives up the cost
 Heavyweight processes are ones with a lot of documentation and 

management
 There's no product until completion of the entire project
 Could take years
 We don't realize the problems until the product is available
 Clients might not want the product anymore



 Waterfall was the only process for a long time
 Its track record isn't great
 Success only about 25% of the time historically, but the rate is improving

 Waterfall only works when the requirements are stable
 Waterfall has a lot of overhead
 Might be justified for large projects
 Isn't justified for small projects

 Use waterfall only for large projects with stable requirements or 
when there are very high safety, security, or reliability 
requirements

 … or when your professor makes you



 A prototype is a working model of a finished product
 It can model a part or the whole

 Prototypes can help offset problems with the waterfall model
 Prototypes are particularly helpful with testing out UI decisions
 Prototypes are easy(ish) to make and change
 Try out several!
 See which one is the better design

 Throwaway prototypes are just used for making specifications 
and then thrown out

 Evolutionary prototypes are modified into the final product



 Prototypes can be used 
within the waterfall 
model

 Or they can be used for 
an entirely prototype-
based lifecycle model

 This idea is what 
incremental and agile 
processes are built 
around

Design

Product
Vision

Implementation

Prototype

Demo and 
Evaluation

Software 
Product Complete Incomplete



 Changes to specifications are easy to handle
 Customers are more likely to get what they want (since they 

get regular opportunities for feedback)
 Customers can get (potentially) useful software quickly
 Not much documentation or management is needed
 Lightweight development process



 Without the planning of a process like waterfall
 It's hard to predict a reasonable deadline for the final product
 It's hard to predict the budget

 Product design might be bad since the product evolved 
without following a plan
 The biggest problem here is maintainability: How can new features 

be added?
 An undisciplined process can have poor quality control
 The product might be unreliable or buggy



 A risk is an event with negative consequences
 Losing source code
 Losing a team member
 Finding an unexpected design flaw
 Underestimating the time needed to write a piece of code

 Business people think about risk a lot
 Risk management is identifying, analyzing, controlling, or 

mitigating risks
 Risk management should be incorporated into all software 

lifecycle processes



 The spiral model is built around 
risk management

 Multiple cycles are used
 Each cycle starts by looking at 

goals
 Then evaluate different 

approaches to the goals in terms 
of risk

 The model on the right shows 
how the spiral model can be 
applied to waterfall



 As with many of these models, the strengths and weaknesses 
are closely related:
 The spiral model centers on risk management, but risk management 

is really hard
 Few people have the necessary training or skill to properly evaluate 

risks
 The spiral model is very general, requiring a lot of knowledge to 

make it work for software processes







 Friday is a work day
 Next Monday:
 Iterative and incremental processes
 Rational Unified Process
 Agile processes



SCAN the QR CODE to REGISTER



 Keep reading Chapter 2: Software Processes for Monday
 Finish your draft Project 1 by Friday


	COMP 3100
	Last time
	Questions?
	Software Processes
	Processes
	More terminology
	Waterfall model
	Waterfall lifecycle model
	More on waterfall
	Advantages of waterfall
	More advantages of waterfall
	Disadvantages of waterfall
	More disadvantages of waterfall
	To waterfall or not to waterfall?
	Prototyping
	Prototyping process
	Advantages of prototyping
	Disadvantages of prototyping
	Risk management
	Spiral model
	Drawbacks of the spiral model
	Quiz
	Upcoming
	Next time…
	Slide Number 25
	Reminders

