
Week 3 - Wednesday



 What did we talk about last time?
 Requirements management
 Requirements modeling
 UML
 Activity diagrams
 Use case diagrams
 State diagrams
 Sequence diagrams
 Class diagrams







 A process is a collection of actions that turns a set of inputs 
into a set of outputs

 Describing processes requires:
 Specifying the inputs to the whole process and the outputs from the 

whole process
 Specifying the actions of the process
 Specifying the inputs to each action in the process and the outputs 

from each action
 Specifying the conditions and order for each action

 UML activity diagrams are good ways to model processes



 A software process is a process used to make or support 
software

 A software lifecycle process shows the steps from product 
inception to retirement of the product

 A model is an entity used to represent another entity (the 
target)

 A software process model is a model for a software process
 Usually a 2D diagram like a UML diagram



 The waterfall lifecycle process model is the oldest 
description of the tasks in the development of software

 Proposed by Winston Royce in 1970
 It follows similar processes in other engineering disciplines
 It's the usual approach we've been talking about, from 

requirements to design to implementation to testing to 
maintenance



Requirements

Design

Implementation

Testing

Maintenance

SRS

SDD

Code
Software 
Product

Product
Vision

• Rounded rectangles are actions (tasks)
• Squared rectangles are documents (data)



1. Developers get a product vision
2. From it and interaction with 

stakeholders, they create a software 
requirements specification (SRS)

3. From the SRS, they create a software 
design document (SDD)

4. Using the SDD, they implement the 
code

5. Then they test the software product
6. When the software is in use, problems 

are found, leading to maintenance 
and a new release

 The name "waterfall" is because 
each action flows to the next
 Like a series of waterfalls

 In principle, developers never
return to an earlier action

 In practice, earlier actions must 
always be reexamined because you 
never get it perfect the first time

 Even so, the goal is to be a 
thorough as possible the first time



 The whole product is specified
 The project to create it is planned early
 This approach is important for large and complicated 

products from a management perspective
 Size, cost, delivery dates, etc.

 By comparing to the plan, it's easy to tell if a product is on-
time and on-budget

 If it isn't, managers can take actions
 Increase time, increase budget, reduce scope, etc.



 If each step is done completely and correctly, all mistakes are 
found before moving on to the next step
 This ends up being the major disadvantage of waterfall, too, since 

mistakes usually propagate to future steps
 Good documentation is created for each step
 This is really important when new people are added to the project

 Each phase is distinct, allowing it to be carried out by teams 
that specialize in that phase
 For multiple projects, appropriate teams can be scheduled for 

maximum efficiency



 Requirements can't change
 But they usually do
 If requirements change, all the advantages of waterfall's 

predictability disappear too
 Even when requirements stay the same, it's hard to be 

complete and consistent in documenting them
 Creating all the documentation for waterfall is expensive
 If you have separate teams for each phase, each team has to 

learn what has already been done



 Because there are so many teams, a lot of management is 
needed
 Drives up the cost
 Heavyweight processes are ones with a lot of documentation and 

management
 There's no product until completion of the entire project
 Could take years
 We don't realize the problems until the product is available
 Clients might not want the product anymore



 Waterfall was the only process for a long time
 Its track record isn't great
 Success only about 25% of the time historically, but the rate is improving

 Waterfall only works when the requirements are stable
 Waterfall has a lot of overhead
 Might be justified for large projects
 Isn't justified for small projects

 Use waterfall only for large projects with stable requirements or 
when there are very high safety, security, or reliability 
requirements

 … or when your professor makes you



 A prototype is a working model of a finished product
 It can model a part or the whole

 Prototypes can help offset problems with the waterfall model
 Prototypes are particularly helpful with testing out UI decisions
 Prototypes are easy(ish) to make and change
 Try out several!
 See which one is the better design

 Throwaway prototypes are just used for making specifications 
and then thrown out

 Evolutionary prototypes are modified into the final product



 Prototypes can be used 
within the waterfall 
model

 Or they can be used for 
an entirely prototype-
based lifecycle model

 This idea is what 
incremental and agile 
processes are built 
around

Design

Product
Vision

Implementation

Prototype

Demo and 
Evaluation

Software 
Product Complete Incomplete



 Changes to specifications are easy to handle
 Customers are more likely to get what they want (since they 

get regular opportunities for feedback)
 Customers can get (potentially) useful software quickly
 Not much documentation or management is needed
 Lightweight development process



 Without the planning of a process like waterfall
 It's hard to predict a reasonable deadline for the final product
 It's hard to predict the budget

 Product design might be bad since the product evolved 
without following a plan
 The biggest problem here is maintainability: How can new features 

be added?
 An undisciplined process can have poor quality control
 The product might be unreliable or buggy



 A risk is an event with negative consequences
 Losing source code
 Losing a team member
 Finding an unexpected design flaw
 Underestimating the time needed to write a piece of code

 Business people think about risk a lot
 Risk management is identifying, analyzing, controlling, or 

mitigating risks
 Risk management should be incorporated into all software 

lifecycle processes



 The spiral model is built around 
risk management

 Multiple cycles are used
 Each cycle starts by looking at 

goals
 Then evaluate different 

approaches to the goals in terms 
of risk

 The model on the right shows 
how the spiral model can be 
applied to waterfall



 As with many of these models, the strengths and weaknesses 
are closely related:
 The spiral model centers on risk management, but risk management 

is really hard
 Few people have the necessary training or skill to properly evaluate 

risks
 The spiral model is very general, requiring a lot of knowledge to 

make it work for software processes







 Friday is a work day
 Next Monday:
 Iterative and incremental processes
 Rational Unified Process
 Agile processes



SCAN the QR CODE to REGISTER



 Keep reading Chapter 2: Software Processes for Monday
 Finish your draft Project 1 by Friday


	COMP 3100
	Last time
	Questions?
	Software Processes
	Processes
	More terminology
	Waterfall model
	Waterfall lifecycle model
	More on waterfall
	Advantages of waterfall
	More advantages of waterfall
	Disadvantages of waterfall
	More disadvantages of waterfall
	To waterfall or not to waterfall?
	Prototyping
	Prototyping process
	Advantages of prototyping
	Disadvantages of prototyping
	Risk management
	Spiral model
	Drawbacks of the spiral model
	Quiz
	Upcoming
	Next time…
	Slide Number 25
	Reminders

